Site-directed mutagenesis of Moloney murine leukemia virus reverse transcriptase. Demonstration of lysine 103 in the nucleotide binding site.

نویسندگان

  • A Basu
  • S Basu
  • M J Modak
چکیده

Lys103 and Lys421 of Moloney murine leukemia virus reverse transcriptase have been implicated in the dNTP binding function as judged by their reactivity to a substrate binding site-directed reagent, pyridoxal 5'-phosphate (Basu, A., Nanduri, V. B., Gerard, G. F., and Modak, M. J. (1988) J. Biol. Chem. 263, 1648-1653). To assess the true catalytic importance of the individual lysine residues in Moloney murine leukemia virus reverse transcriptase, we mutated Lys103 and Lys421 to leucine and alanine, respectively. Analysis of the mutant enzymes revealed that mutation at the 103 position had a drastic effect on the DNA polymerase activity whereas the 421 mutation had no effect. Both mutants exhibited normal RNase H activity as well as the ability to bind to RNA or DNA templates as judged by UV-mediated cross-linking of the enzyme to the template primers. The enzyme with mutation at codon 421 (Lys----Ala) exhibited properties that were indistinguishable from the wild type with respect to its mode of catalysis, i.e. preference of template primer and divalent metal ion, RNA- or DNA-dependent DNA polymerase activity, RNase H activity, and the processive mode of DNA synthesis. These observations suggest that only Lys103 and not Lys421 is the catalytically important residue that is involved in the binding of substrate dNTP in Moloney murine leukemia virus reverse transcriptase.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Amino acid substitutions away from the RNase H catalytic site increase the thermal stability of Moloney murine leukemia virus reverse transcriptase through RNase H inactivation.

We have previously used site-directed mutagenesis to introduce basic residues (i.e., Arg; Lys) in the nucleic acid binding cleft of the Moloney murine leukemia virus reverse transcriptase (MMLV RT) in order to increase its template-primer (T/P) binding affinity. Three stabilizing mutations (i.e., E286R, E302K, and L435R) were identified (Yasukawa et al., 2010). Now, we studied the mechanism by ...

متن کامل

Determination of the site of first strand transfer during Moloney murine leukemia virus reverse transcription and identification of strand transfer-associated reverse transcriptase errors.

Reverse transcriptase must perform two specialized template switches during retroviral DNA synthesis. Here, we used Moloney murine leukemia virus-based vectors to examine the site of one of these switches during intracellular reverse transcription. Consistent with original models for reverse transcription, but in contrast to previous experimental data, we observed that this first strand transfe...

متن کامل

Patch cloning method for multiple site-directed and saturation mutagenesis

BACKGROUND Various DNA manipulation methods have been developed to prepare mutant genes for protein engineering. However, development of more efficient and convenient method is still demanded. Homologous DNA assembly methods, which do not depend on restriction enzymes, have been used as convenient tools for cloning and have been applied to site-directed mutagenesis recently. This study describe...

متن کامل

Isolation of a recombinant murine leukemia virus utilizing a new primer tRNA.

We have previously described the construction of a mutant of Moloney murine leukemia virus bearing a deletion at the normal site of integration of the viral DNA. We have now recovered a revertant of the virus after abortive infection of mouse cells and have determined the structure of the new virus. The revertant is a recombinant virus containing a 500-base-pair patch of new sequences derived f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 265 28  شماره 

صفحات  -

تاریخ انتشار 1990